От клика к прогнозу и обратно: Data Science-пайплайны в Одноклассниках

День 1 /  / Зал 1  /  Для практикующих инженеров

Машинное обучение — это весело, но чтобы оно работало в промышленности, нужно делать много всего скучного. В данном докладе мы рассмотрим все технологии, алгоритмы и методы, необходимые для того, чтобы ваше машинное обучение сияло, как бриллиант в золотой оправе.

В качестве примера мы рассмотрим одну сложную задачу — персонализацию новостной ленты. Не вдаваясь в детали машинного обучения, мы поговорим о сборе данных (пакетном и в режиме реального времени), ETL, а также об обработке, необходимой для получения модели.

Но просто получить модель недостаточно, поэтому мы также поговорим о том, как получить основанные на модели прогнозы в сложной высоконагруженной распределённой среде и как их использовать для принятия решений.

В данном докладе мы поговорим о технологиях обработки и хранения данных экосистемы Hadoop, а также о многом другом. Этот доклад будет полезен тем, кто занимается машинным обучением не только для развлечения, но и для профита.


Скачать презентацию

Наши контакты